近期睇到以下文章, 講解Aerobatics飛機基本設定...
You will be low and slow thus each input to your plane can have dire consequences. Practice up high, but get as low as possible as soon as possible but be confident in your flying before getting too low.
The lower (lighter) the wing loading the better. Power is not as important as wing loading. If you flop out of a maneuver, a low wing loading prevents stalling. A light plane will allow you to not lose any altitude when falling out of a maneuver, it simply starts flying immediately without having to build up speed to get flying again. Power is good for show, but it won't save a heavy plane in a bad position like low weight will. As long as you have enough power to maintain a hover, you have enough power.
Get a simulator. Practicing hovering on a simulator is often harder than with many planes. Master it on the computer and you will have an easy time flying your plane.
Set your radio up for lots of throw and experiment. Certain designs do better than others. The bigger the better too. You can get a gyro, once you are an expert, sell it.
Hovering and torque rolling are the most difficult. Once you've practiced on the simulator, practice with your plane. The closer you are to the plane, the easier it is to see and make corrections, but the shorter the distant to destruction. There's no substitute for practice when it comes to 3D. It typically takes a thousand attempts or more at hovering to become good.
Experiment and practice with your plane until you learn everything you can about it.
FIRST STEP: Programming your radio for 3D flying is key to being an awesome 3D pilot. See our webpage on programming your radio first.
SECOND STEP: Trimming out your plane for 3D flying is critical to being an awesome pilot. Right thrust and up thrust must be optimized. Perfect right thrust and up thrust for hovering is different than for sequence flying though they are close. This cannot be changed on a day to day basis, so you need to decide what is most important to you. It's easier to fly sequence with 3D right thrust and upthrust than it is to fly 3D with sequence right thrust and upthrust, so if you are primarily interested in 3D, trim the plane out as follows: On a day when there is little or no wind, fly level to the center of the field at a slow speed, pull to vertical and roll to see the canopy of the plane as if you were going to do a hammer. Let the plane slow to almost a stop. Go to full throttle and let go of the sticks and fly for several seconds. If the plane veers right of left, adjust the rudder to keep the plane vertical. Do this 10 to 20 times to be sure. Then put washers under the engine mount to put in about 1/2 the angle that the rudder is (if the rudder is deflected 4 degrees, change the engine thrust by 2 degrees). Do not line up the cowl yet with the spinner backplate. Do another flying test and make adjustments until the plane goes exactly straight up when you apply throttle. Follow the same guidelines for setting the upthrust. You need upthrust based on the CG of your plane as it hangs from the propeller. If you picked up the prop and let the plane hang vertically as in a torque roll (TR), if all the components inside the plane were in proper position, the plane would point straight up and the engine thrust line would be right through the CG. This probably isn't the case so change the engine thrust (you probably need upthrust) so that the plane doesn't keep falling forward to the belly when in a TR.
THIRD STEP: You should be good with the rudder. Learn rudder skills by following the steps above. You especially need rudder skills when the belly of the plane is towards you. Doing belly in hammer heads is good practice. Fly back and forth across the field inverted and do hammer heads at each end. Keep the uplines straight (using the rudder) and hammer while under control the direction that you choose.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment